Kv2 channels form delayed-rectifier potassium channels in situ.

نویسندگان

  • J T Blaine
  • A B Ribera
چکیده

A non inactivating potassium current known as the delayed rectifier plays a major role in membrane repolarization during an action potential. Whereas several candidate genes exist that code for potassium current, the identities of the molecular isotypes that are responsible in situ for membrane repolarization remain unidentified. We report that Kv2 channels play a major role in action potential repolarization. Kv2 channel elimination resulted in a reduction of the density of noninactivating potassium current and a prolonged impulse duration. In contrast, suppression of noninactivating current carried by Kv1 channels was much less effective in increasing action potential durations. Thus, whereas different potassium channels encode sustained potassium current, their contributions to action potential repolarization vary and require direct examination in situ. Our results indicate that Kv2 subunits function as classic delayed-rectifier channels in vertebrate neurons.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Kv2 channel regulation of action potential repolarization and firing patterns in superior cervical ganglion neurons and hippocampal CA1 pyramidal neurons.

Kv2 family "delayed-rectifier" potassium channels are widely expressed in mammalian neurons. Kv2 channels activate relatively slowly and their contribution to action potential repolarization under physiological conditions has been unclear. We explored the function of Kv2 channels using a Kv2-selective blocker, Guangxitoxin-1E (GxTX-1E). Using acutely isolated neurons, mixed voltage-clamp and cu...

متن کامل

Fluorescence measurements reveal stoichiometry of K+ channels formed by modulatory and delayed rectifier alpha-subunits.

Modulatory alpha-subunits, which comprise one-fourth of all voltagegated K(+) channel (Kv) alpha-subunits, do not assemble into homomeric channels, but selectively associate with delayed rectifier Kv2 subunits to form heteromeric channels of unknown stoichiometry. Their distinct expression patterns and unique functional properties have made these channels candidate molecular correlates for a br...

متن کامل

Heteromultimeric potassium channels formed by members of the Kv2 subfamily.

Four alpha-subunits are thought to coassemble and form a voltage-dependent potassium (Kv) channel. Kv alpha-subunits belong to one of four major subfamilies (Kv1, Kv2, Kv3, Kv4). Within a subfamily up to eight different genetic isotypes exist (e.g., Kv1.1, Kv1.2). Different isotypes within the Kv1 or Kv3 subfamily coassemble. It is not known, however, whether the only two members of the vertebr...

متن کامل

Heterogeneity in Kv2 Channel Expression Shapes Action Potential Characteristics and Firing Patterns in CA1 versus CA2 Hippocampal Pyramidal Neurons

The CA1 region of the hippocampus plays a critical role in spatial and contextual memory, and has well-established circuitry, function and plasticity. In contrast, the properties of the flanking CA2 pyramidal neurons (PNs), important for social memory, and lacking CA1-like plasticity, remain relatively understudied. In particular, little is known regarding the expression of voltage-gated K+ (Kv...

متن کامل

Members of the Kv1 and Kv2 voltage-dependent K(+) channel families regulate insulin secretion.

In pancreatic beta-cells, voltage-dependent K(+) (Kv) channels are potential mediators of repolarization, closure of Ca(2+) channels, and limitation of insulin secretion. The specific Kv channels expressed in beta-cells and their contribution to the delayed rectifier current and regulation of insulin secretion in these cells are unclear. High-level protein expression and mRNA transcripts for Kv...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 21 5  شماره 

صفحات  -

تاریخ انتشار 2001